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A semiempirical equation of combinatory entropy in binary solutions of semiflexible or rod-like polymers 
in solvent has been derived, based on a correlation between the combinatory entropy in polymer solution 
derived by Flory, Huggins, Miller and Guggenheim and an ideal simple liquid solution. The expression 
for the partial entropy of mixing of solvent ASM,~ obtained in this work is given by: 

ASu, l /k= - I n  ~b 1 - ~b2(1 - r -  1) d- ~(]) 1 (]12 --]-ln{ [~b 1 + ((a2/r)]/[qb 1 -I- (~b2/r) H- ~ b  1 t~2] } 
+ ctO 2 ln{ (r- 1 + ~bl)/[~bl + (q~2/r) + ~ 1(~2] } 

where ~ is the volume fraction of polymer (i = 2) and solvent (1), r is the number of segments per polymer, 
k is the Boltzmann constant and ~ is a parameter characterizing the flexibility of polymer chain such that 
ct=0 for flexible polymers and ct=(1-r-~)/q~ for rigid-rod polymers. The chemical potential of solvent 
in the polymer solution is given by: 

#, -- I 2° = R T[ - -  ASu, , /k  + zoo + a)~b2 2] 

where ;(0 is the polymer-solvent interaction parameter in the Flory-Huggins theory. 

(Keywords: combinatory entropy; polymer solution; ideal simple liquid solution; Flory-Huggins theory; semiflexible 
polymer; rod polymer) 

INTRODUCTION 

The Flory-Huggins theory is the most simple and 
fundamental theory of flexible polymer solutions. The 
theory uses the mean field approximation that the 
concentration of solution is uniform over the entire range 
of solution, for calculating the number of configurations 
of polymer and solvent molecules and for evaluating the 
enthalpic term by a van Laar model 1. The division of 
the free energy into entropic and enthalpic terms made the 
Flory-Huggins theory even more simple and useful. 
Flory also stressed a division of the solution into 
intermolecular and intramolecular factors, and stated 
that thermodynamic properties of a flexible polymer 
solution are independent of the structure and flexibility 
of the macromolecules, and are dependent on only one 
parameter, the number of segments per polymer, r. 

Guggenheim 2, Miller 3, and Huggins 4 derived essen- 
tially the same equations for the entropy of mixing in 
polymer solutions where a parameter Z coordination 
number is included in addition to the parameter r. 
Investigation of the combinatory entropy for non-flexible 
polymers such as semiflexible and rod-like polymer has 
been made by Flory 5'6, where new parameters are 
introduced: a fraction f of the bonds bent out of the 
co-linear direction of the preceding segment in the 
semiflexible polymer, and the angle of inclination of the 
particle to the domain axis in the rod-like polymer. Many 
different approaches to the calculation of combinatory 
entropy and free energy in polymer solutions have been 
made. The effects of orientation on combinatory entropy 
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are discussed by DiMarzio 7, while the combinatorial 
entropy correction for imperfect randomness is calcu- 
lated by Huggins a. More rigorous calculation of com- 
binatory entropy based on the self-avoiding and mutually 
avoiding walk has been done by Kurata 9 using the 
pseudoconfiguration method, and by Bawendi and 
Freed 1°-~2 in the lattice spin-field theory, and by Monte 
Carlo simulation I a, 14. 

This work discusses the correlation between the 
combinatory entropy in polymer solution and the ideal 
liquid mixture based on the lattice theories of Flory, 
Huggins, Guggenheim and Miller and a simple and useful 
equation is derived for the entropy of mixing and 
chemical potential in binary solutions of semiflexible and 
rod-like polymers in solvents. Division of the Gibbs free 
energy of mixing into the entropic and enthalpic term in 
polymer solution is also discussed. 

FUNDAMENTAL RELATION IN THE 
CALCULATION OF COMBINATORY ENTROPY 

It is well known that the configurational partition 
function of ideal, simple liquid mixtures (SM) of N 1 
molecules of component 1 and N 2 molecules of com- 
ponent 2 is given by: 

nSM = (N1 + N2)!/(N, !N2 !) (1) 

~ X ~ ' X ~  N~ (2) 

where X i = N i / ( N  ~ + N2) is the mole fraction of i and the 
Stirling approximation that N ~ ! ' ~ ( N ~ / e )  N' is used. It is 



interesting to calculate the number of configurations of 
the mixture under the condition that nt molecules of 1 
are fixed at n~ different positions in the lattice, which is 
designated as f~F and is given by: 

- -  ~'~SM x I (3) 
where X~ ~ is the probability that n~ different positions 
are occupied by n~ molecules of 1 simultaneously, or in 
other words n 1 molecules are fixed at nl different 
positions in the lattice. It is obvious that if N1 molecules 
of 1 and N2 molecules of 2 are fixed at positions of 
(N~ + N 2), then the number of configuration is one, since 
~-~ v N I  y N 2 _  1 SMXXl "" 2 - - ~ ,  from equation (2). It is also interesting 
to calculate the number of configuration when n 1 
molecules of 1 are removed or disappear from the 
mixture, which is designated as Dn R, and is given by: 

D, R, = (N 1 + N 2 - -  n~ )!/[(N 1 - n I )!N 2 !] (4) 

= DsM[N, ( N , -  1). . .  (NI - h i  + 1)]/ 
[(N, +N2)(N x + N  2 - -  1 ) . . .  (Na  + N  2 - n  1 + 1)] (5) 

The value of f ~  is equal to the number of configurations 
in which nl molecules of 1 are combined with the rest of 
the molecules ( N l - n l )  of 1 to make (Nl -na)  big or 
long molecules. 

CORRELATION BETWEEN THE 
COMBINATORY ENTROPY IN POLYMER AND 
IDEAL LIQUID SOLUTIONS 

It is instructive to express the combinatory partition 
function in the Flory-Huggins theory by using the 
previous relation. The Flory-Huggins equation was 
originally expressed byl: 

~"~F--H = ( N 2 ! ) -  1 [ Z ( Z  - 1 )r - 2]N2[NI1 -r)N2] 

X r ( N 2 r ) [ ( n t / r ) ! ( n t / r - -  N 2 ) ! ]  r (6) 

where N i is thc number of solvent molecules (i = 1) and 
polymer (i = 2), r is the number of segments per polymer, 
Z is the coordination number and Nt=N~ +rN2 is the 
total number of lattices. Equation (6) reduces to: 

Y~F-H = q~(Nt!/[N1 !(rN2)!]}~b2 N:('- 1) (7) 

where 

and 

q2 = Z ( Z - -  1)'- 2 t i e r -  1 (8) 

(b2 = rN2/(N1 + rN2) (9) 

In the Flory-Huggins theory, Dv-n in equation (7) is 
divided into the intramolecular factor q2 for polymer 
chain and the intermolecular factors, which are expressed 
by the ideal mixing term Nt!/ENI!(rN2)! ] for rN 2 
disconnected and separated molecules of 2 from N 2 

polymers with r segments per polymer and N 1 solvent 
molecules, and the probability term that N2( r -1  ) 
separated molecules are fixed at NE(r-1  ) positions in 
the lattice. In other words, equation (7) gives the number 
of configurations of ideal mixing of N~ of 1 and rN 2 of 
2 under the restriction that ( r -  1 ) N  2 separated molecules 
are fixed and only N 2 molecules of 2 and N 1 molecules 
of 1 are free to move in the lattice with ( r - 1 ) N  2 fixed 
points. If rN 2 of 2 are fixed, the configuration D,N 2 
becomes: 

~'~rN2=qN2~)l  NI (10) 
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and the partial entropy of solvent (1) ASM,1 defined by 
AS~, 1 = k(t~A In ~/dN 1 )T,P,N2 and A In f~ = In ~'~M --  In f~N, = 0 
--lnGN2=0 is given by: 

ASM,1/k= - I n  ~bl-~b 2 (rN 2 fixed) (11) 

On the other hand, ASM,1 for the Flory-Huggins theory is: 

ASM, ~/k = - I n  q~1 - 42 -[- ~)2/r (12) 

The t e r m  dpE/r in equation (12) comes from the freedom 
with which N 2 separated molecules of 2 can move over 
the restricted lattice. A formulation of the combinatory 
entropy in polymer solutions for various theories has 
been done by the same procedure as mentioned above, 
which is given by: 

__ N2 ( r -  1)N2 
~)comb-- q2 ~')id©al~2 f(N1,N2,r,Z) (13) 

where f is a function of N 1, N 2 ,  r and coordination 
number Z and is dependent on the model. It is derived 
that f~rod for a mixture of N 2 parallel oriented rigid-rod 
polymers with axis ratio r and N~ solvent is equal to 
~rod=(NI+N2)!/(NI!N2 !) and, using equation (4), is 
given by: 

~ ' ~ r o d = ~ ) i d e a l { [ N 2 r ( N 2  r -  1).. .  ( N  2 T 1)]/ 
[Nt(N,-  1).. .  (N 1 + N2 + 1)]} (14) 

where 

~'~ideal = Nt!/[Nx !(rN2)!] (15) 

The f~rod corresponds to the number of configurations of 
ideal mixture under the restriction that N2(r-  1) separated 
molecules of 2 are removed from the system or combined 
with the rest of 2 to make N 2 long rod molecules. The 
ASM,1 for the rod polymer solution is expressed using the 
volume fraction in equation (9) by: 

ASM,1/k= - In  q~l + l n [ 1  - (1 - r -  1)q~2] (16) 

~ - I n  ~bl- (1-r-1)~b2 th2~0 (17) 

where equation (17) shows that ASM, 1 for the rod mixture 
approaches that of the Flory-Huggins theory at the limit 
of ~b2 = 0. The partial entropy of mixing of polymer in the 
Flory-Huggins theory is given by: 

ASM,2/k = q ~ l ( r -  D - I n  ~b2 (F-H) (18) 

and that for the rod polymer solution by: 

ASM,2/k=-ln(a2+ln[l+(a~(r-1)] (Rod) (19) 

-ln~b2 + ~bl(r- 1 ) ~bl(r- 1)~0 (20) 

Therefore ASM,2 for the rod polymer solution at the limit 
of q~l =0  is equal to that of the Flory-Huggins theory 
for a flexible polymer solution. 

DERIVATION OF COMBINATORY ENTROPY IN 
SOLUTION OF SEMIFLEXIBLE AND ROD-LIKE 
POLYMERS IN SOLVENT 

The configurational partition function f2Mi X for solutions 
of semiflexible and rod-like polymers in solvent which 
can predict cases of both flexible polymer solutions and 
parallel oriented rod solution is given by: 

__ ,TNL, TN2('I ~N2(r -  l)--x 
Mix--~/1 1"/2 ~ideal'W2 

x {[(N 2 +x)(N 2 + x -  1). . .  (N 2 + 1)]/ 
[ ( N l + N 2 + x ) . . . ( X l + N 2 + l ) ]  } (21) 

where qi is the partition function for solvent (1) and 
polymer (2) in the pure state and x is a number 
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of molecule 2 characterizing the flexibility of the polymer 
chain, with x =0  for flexible polymer or polymer chain 
in the Flory-Huggins theory and x = N 2 ( r - 1 )  for the 
rigid-rod polymer. The physical meaning of factors in 
equation (21) is as follows. The quantity ~b2 N2(r- 1)-x is the 
probability that N 2 ( r - 1 ) - x  positions are occupied by 
N 2 ( r -  1 ) - x  molecules of 2, and the last term corresponds 
to the decrease in number of configurations due to 
removal of x molecules of 2 from the total (N1 + N 2 + x) 
to make N 2 free long or big molecules with x / N  2 
molecules combined per molecule. The situation is shown 
schematically in Figure 1 where N2 long chains with 
average length x / N  2 are wandering in the lattice with 
N 2 ( r - 1 ) - x  fixed points of 2. Equation (21) gives the 
maximum number of configurations for any value of x, 
although flui ~ decreases with an increase of x. It is 
essential to determine the function of x with respect to 
N1 and N 2. The determination of function x was made 
based on the results of equations (17) and (20), which 
means that the Flory-Huggins theory of x = 0 approaches 
the rod polymer theory at the limit of t~2 =0  and ~bl =0.  
It is assumed in this work that x is expressed by: 

x =o~) l rN 2 (22) 

where • is a parameter characterizing the polymer chain. 
The partial entropy is given using equations (21) and 
(22) by: 

ASM,1/k = - l n  (~1 - -  ~b2(1 - r -  1) + t~(~ 1 (~2 
+ ln{(~bi + ~g2/r)/[qbl + ~)2/r + O~qb 1(])2"1} 
+ ct~b 2 ln{(r -1 + e~bl)/[~b 1 + dp2/r + e~bl~b2]} 

(23) 

and for polymer: 

A SM, 2/rk = d? 1 (1 - r - 1 ) _ (in ~b 2 )/r - ack 2 
+ r-  1 lnl-(~b 1 + ~b2/r)(1 + ~r~b 1)/ 

(~ I + ~2/r + ° ~ 2 ) ]  
+ cz4b~ ln{(r  -~ + o~4bl)/[4,~ + ck=/r + o@,~bz]} 

(24) 

The first three terms on the right-hand side of equations 
(23) and (24) come from "'id=~'2n ,~N:(,- ~)-x in equation (21) 
and the rest from the last factor in equation (21). The 
calculation is given in more detail in the Appendix. 

RESULTS AND DISCUSSION 

The calculation for partial entropy of mixing for solvent 
and polymer has been carried out based on equations 
(23) and (24) for r = 100 and various values of ct, and is 
shown in Figures 2 and 3, where maximum and minimum 
points in ASM,11k versus ~b2 and ASM,2/k versus ~b 2 are 
observed over the concentration range of ~b2 =0 .0~ .2  
and ~/> 0.29. This means that a phase separation occurs 
solely due to the entropy contribution to the chemical 
potential in the semiflexible polymer solution with 

/> 0.29. It is important to point out that x in equation 
(22) expresses an excess number of solvent molecules 
surrounding the total polymer segments rN2 from that 
in the random mixing model, because x = 0  or ~ = 0  
indicates the random mixing model. The quantity x is 
also related to the polymer flexibility. Figure 4 demon- 
strates schematically how X = ( x + X o ) / N 2  decreases 
with increasing flexibility, where X means the number of 
solvent molecules surrounding the polymer and x 0 is that 
for N2 polymers in the random mixing model. In the 
case of rod polymers, X = r ( Z -  2) + 2, while in the flexible 
polymer many lattices of solvent surrounding the polymer 

, . o  . . . . . .  

O0 0. I 0.2 

~2 

Figure 2 Plot of ASM,1/k versus ~2 calculated by equation (23) with 
r = 100 for various values of ct 
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Figure 1 Schematic diagram of the configurations in polymer solution 
according to equation (21). The filled circles correspond to fixed points 
in the lattice and connected open circles are chains wandering in the 
lattice. An empty space is filled with solvent molecules 

0415 

O.4tC 

<3 

0.405 \ 
040C 

O0 0,'I 

0300 

O2 
4z 

Figure 3 Plot of ASu.2/kr v e r s u s  ~2 calculated by equation (24) with 
r = 100 for various values of ct 
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Figure 4 Schematic diagram of X=(x+xo)/N 2 in various chains; 
(a) flexible chain; (b) and (c) semiflexible chain; (d) rigid-rod chain. 
The numbers represent the number of solvent molecules surrounding 
the chains in the plane of the diagram 

segments are shared by two or more segments of polymer, 
and therefore X or x decreases considerably. It is of 
interest to examine a correlation between x and the 
enthalpy of mixing AH M which is given in the Flory- 
Huggins theory by: 

A H M = k T z ° ~ x r N 2  (25) 

where ~o is the interaction parameter between polymer 
and solvent molecules. The functions of x in equation 
(22) and AHm in equation (25) with respect to ~b 1 and 
rN  2 are essentially the same. One can say that the 
enthalpic contribution is included in the expression of 
partial entropy of mixing in equations (23) and (24). This 
point is discussed in more detail. It is well known that 
a dissolution process of solvent into the polymer matrix 
is governed by the minimization process of the Gibbs 
free energy of mixing at constant temperature and 
pressure such that: 

AGM,mi n = AHM- T A S u  (26) 

In mean field theories, such as the Flory-Huggins theory, 
AHu and ASu are evaluated by the random mixing model 
where the polymer segments are disconnected and 
distributed randomly to make a uniform concentration 
of polymer segments as an ideal solution. On the other 
hand, if there is a move towards a stable configuration 
in the dissolution process which accompanies the enthalpy 
change, the new configuration must have the most 
suitable AHM to make AGM a minimum. That means that 
AH u and ASu are cooperative. In other words, ASM 
is expressed as a function of concentration and AHM. 

It is important to discuss theories of combinatory 
entropy in polymer solutions, which can predict the 
entropy in extreme cases of both flexible polymer and 
parallel oriented rigid-rod polymer. The partial entropy 
of mixing of solvent in the Guggenheim-Miller-Huggins 
theory is given by 2--4: 

ASM,~/k = - I n  ~b~ + (Z/2)In[1-2q52(r-  1)/(Zr)] (27) 

and for Z =  2.0 and Z ~  oo, respectively, by: 

ASM.a/k= - l n  q~ + I n [ l -  ~ 2 ( 1 - r -  x)] (28) 
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and 

ASM, x /k= - l n  ~bl- ~b2(1 - r  -x) (29) 

It is obvious that equation (28) corresponds to the 
rigid-rod polymer equation (16) and equation (29) to the 
Flory-Huggins theory equation (12). The theory of 
rod-like particles is expressed by Flory a s r :  

~M = qN'qN2{(Nx + yN2)! /[N1 !N2 !(Na + rN2)tY- a)N,] } 
x (S2!/]--[knk!) (30) 

where y = r sin ~b, ~ is the angle of inclination of a particle 
to the domain axis and n k is the number of molecules 
whose directions occur within the elements 6 of solid angle 
04 . Equation (30) reduces to: 

q~ q2 {(N~ +yN2)!/[Nl!(yN2)!]} ~f~M ~ NI N2 

× (yN2/Nt) (y-1)N'EyN2/e~r-x)N21(N2!/Hknk!) (31) 

which is quite similar to the Flory-Huggins theory ify = r 
and (N2!/ l - - lknk!) ,~yN'=Z t'-I)N', except that y N 2 / N  t is 
used in equation (31) instead of y N 2 / ( N  x +yN2) where 
N t : N x + rN 2. In the Flory rod particle theory, y is taken 
as a variable; y = r  gives the Flory-Huggins theory and 
y =  1 gives that for parallel rigid-rod polymer or ideal 
mixtures of N 1 solvent molecules and N 2 polymers. 
However, the total number of lattices N t is unchanged 
in any value of y and therefore the probability that a 
submolecule occupies one lattice is given by y N 2 / N  t and 
not y N 2 / ( N  1 +yN2). 

It is interesting to determine the Gibbs free energy of 
mixing AG M in binary solutions of semiflexible or rod-like 
polymer in solvent: 

AGu = k T { N  x In q~a + N 2  In 4)2 + (N~ + S 2 )  

x ln[(~b 1 + (92/r + ~q~ 1 ~b2 )/(~) 1 "[- ~b2/r)] 
- N 2  ln(1 + ~rthi) 
+ ~rS2 q~ 1 ln[(qb a + ~b 2/r + ctq~ x q~2)/(r- x + ~q~ 1)] 
+ g°(1 + ~)q~xrN2} (32) 

where the enthalpy of mixing is assumed to be expressed 
by AH M = k T Z ° (1 + ~ )q~ ~ r N 2. Then the chemical potential 
of solvent and polymer is given by: 

(/~l - # ° ) / R T = l n 4 9 x  -F q~2(1 - -  r -  x ) - -  ~t])i~b2 

-ln{(~bl + flP2/r)/[~) a + ~PE/r+ 0~t~ 1~)23 } 
--  ~b 2 ln{(r -x + ~bx)/ 

[~bl +~b2/r+~q~xqS2]} +god  +~t)tk 2 (33) 

and 

~ 2 - ~t°)/r R T = -4h(1  - r - a ) + l n  ¢b 2/r + ~ck 2 
- r  -1 lnE(q~x + q~2/r)(1 +~trq~l)/ 

(4~x + ~2/r + ~¢'x~2)] 
- ~4'~ In{ ( r -  x + = ~ i ) /  

[49x + 492/r + a~iq~2]} + Z°( 1 + ~)~ b2 
(34) 

Equations (33) and (34) indicate that the entropy and 
enthalpy terms in the chemical potential are cooperative 
through the parameter ~ which depends on the flexibility 
of polymer chain and ~ = 0  corresponds to the Flory- 
Huggins theory. As mentioned before, in the Flory-Huggins 
theory the ( r - 1 ) N  2 points in the lattice N t = N  1 + r N  2 
are fixed or occupied by the separated segments of 2 and 
N 2 separated segments of 2, and N x solvents move 
around the lattice with ( r - 1 ) N  2 fixed points; therefore 
rN  2 separated segments are not allowed to overlap each 
other and therefore they are self- and mutually avoiding 
ones. The essential difference between the Flory-Huggins 
theory and the present one is the introduction of 
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1.0 l- I ~ ]  

o 
x 

:E 

<3 

0 5  

0.0 
I * I I  

is shown in Figures 5 and 6 where I is positive and II is 
negative. In ASM,1 I increases and II decreases with 
increasing 4)2, and ASM, 1 itself is small due to cancellation 
of the two terms. However, in the case of ASM,2, I 
decreases and II increases with increasing 4)2, and ASM,2 
decreases slightly with 4)2 and is dominated by I. It is 
shown that the phase separation behaviour in Figures 2 
and 3 is attributed mainly to factor II, related to the 
formation of long chains in solution. This is consistent 
with the conclusions reached by Onsagerl 5 and Ishihara ~6, 
that solutions of sufficiently asymmetric long rods show 
phase separation. 
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Figure 5 ASM, I/k versus ~b 2 plot for ~t=0.30, where I corresponds to 
the first three terms on the right-hand side of equation (23) and II 
corresponds to the last two terms and therefore ASu,1/k=I + II 
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Figure 6 ASM.2/kr versus ~P2 plot for c(=0.30, where I corresponds to 
the first three terms on the right-hand side of equation (24) and II  
corresponds to the last two terms and therefore ASM.2/kr = ! + II 

parameter x, reflecting the contr ibut ion of local mot ion 
of polymer chain and semif lexibi l i ty or rod-l ike character 
of local chain to the combinatory entropy, which are 
neglected in the Flory-Huggins theory. The parameter x 
also gives a measure of the number of contacts between 
the polymer segments and solvent in excess of that in the 
random mixing model. 

The contributions to the partial entropy of mixing in 
the semiflexible polymer solution are examined by 
dividing ASM,i into two factors: factor I related to the 
f~id=al and the probability term 4)t2"-l)N2-x in equation 
(21); and factor II related to the decrease in the number 
of configuration due to the formation of long chains. This 
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APPENDIX 

The number of configurations for equation (21) is 
expressed by: 

~'~Mix = 'I1rIN'aN21'~"/2 ~"idealw2~N2('- l)-X(N 1 + N2)!(N 2 + x)!/ 
[(N 1 + N 2 + x ) [ N  2 !] (A1) 

The entropy of mixing ASMix for equation (A1) is: 

ASMi,Jk = - N1 In 4)1 - N2 In 4)2 
- -  ( N  1 + N 2 )  ln[(N1 + N 2 + x)/(N 1 + N 2 )  ] 
- x ln{[(N1 + N2 + x)/(N2 + x)]4)2} 
+ N 2 ln[(N 2 + x)/N2-1 (A2) 

The partial entropy of mixing is calculated from equation 
(A2); that for solvent ASM,1 is: 

ASM. 1/k = - In 4) 1 - 4)2 (1 - r -  i) + x/Nt 
+ ln[(Nl + N2)/(N1 + N 2  + X)] + (dx/dN 1) 
x { - I n  4)2 +ln[(N2 +x)/(N1 +N2 +x)]} (A3) 

and that for polymer: 

ASM,2/k = r4)1 - In 4)2 - 4)1 - x4)l/N2 
+ ln[(N1 + N2)(N2 + x)/(N1 + N 2 + x ) N  2] 
+ (dx/dN2){ln[(N2 + x)/ 

(N1 +N2 +x) ] - - ln  4)2} (A4) 

Equations (23) and (24) are derived from equations (A3) 
and (A4) with equation (22). 

1448 POLYMER, 1993, Vo lume 34, Number 7 


